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Weakly nonlinear stability analysis of a thin liquid film falling down a heated inclined plane with linear
temperature variation in the presence of a uniform normal electric field has been investigated within the
finite amplitude regime. A generalized kinematic equation for the development of free surface is derived
by using long wave expansion method. A normal mode approach and the method of multiple scales are
used to investigate the linear and weakly nonlinear stability analysis of film flow, respectively. It is found
that both Marangoni and electric Weber numbers have destabilizing effect on the film flow. The study
reveals that both supercritical stability and subcritical instability are possible for this type of film flow.
It is interesting to note that both the Marangoni and electric Weber numbers have qualitatively same
influence on the stability characteristics but the effect of Marangoni number is much stronger compare
to the electric Weber number. Scrutinizing the effect of Marangoni and electric Weber numbers on the
amplitude and speed of waves it is found that, in the supercritical region amplitude and speed of the non-
linear waves increases with the increase in Marangoni and electric Weber numbers, while in the subcrit-
ical region the threshold amplitude decreases with the increase in Marangoni and electric Weber
numbers. Finally, we obtain that spatially uniform solution is side-band stable in the supercritical region
for our considered parameter range.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The effect of electric field on a thin liquid film produces a class
of problems that has attracted much attention of several research-
ers due to its technological applications. The presence of electric
field introduces additional physical effects on the flow dynamics
such as body force due to a current in conducting fluids and the
Maxwell stress at the free interfaces. In the industrial process elec-
tric field has been used to destabilize the liquid film on the plane.
Kim et al. [1] studied the interaction of an electrostatic field on the
film flowing in an inclined plane. They found that, in the thin film
limit, the effect of electric field occurred in the wave evolution as
an external pressure distribution, which causes destabilizing effect
on the film. It is interesting to note that, they provide a discussion
on the application of their results to a proposed electrostatic liquid
film space radiator. Nonlinear stability of a perfectly conducting
film flowing down an inclined plane in presence of normal electric
field was investigated by González and Castellanos [2]. They
derived a nonlinear evolution equation with a Hilbert transform
type of term within the limit of small Reynolds number and predict
the destabilizing effect of the electric field in the finite amplitude
regime. Recently, Mukhopadhyay and Dandapat [3] extended the
ll rights reserved.

adhyay).
study of González and Castellanos [2] within the regime of large
Reynolds number and confirmed the existence of subcritical unsta-
ble and supercritical stable zones. They have also determined a
critical value of the electric parameters below which the flow
remains stable.

Another set of problems concerns the thermocapillary effect on
the falling film down an inclined plane. The interfacial stress gen-
erated by the surface tension gradient (Marangoni effect) and the
associated modes of instability are known as thermocapillary
instability. Gousiss and Kelly [4] investigated the effect of thermo-
capillarity on a liquid film falling down an inclined uniformly
heated plane by performing a linear stability analysis based on
Orr–Somerfield and linearized energy equation. They found that
a heated wall has a destabilizing effect on the free surface but a
cooled wall stabilizes the flow. Later Miladinova et al. [5] studied
the effect of non-uniform heating of the plane in the finite ampli-
tude regime by long wave expansion method, as a consequence
their study is valid only at a small vicinity of the critical Reynolds
number. To overcome this limitation Kalliadasis et al. [6] have
studied the problem by integral boundary layer method but they
have considered the plane to be uniformly heated. This integral
boundary layer method has an inherent error as it does not accu-
rately predict the behaviour of the film close to criticality, such
as the order of 20% for the critical Reynolds number. Ruyer-quil
et al. [7] studied the problem by higher-order weighted residual
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approach with polynomial expansions for both velocity and tem-
perature field to overcome the limitation about the criticality of
the above problem. In spite of some limitation each study has a
great importance in its own to accelerate the ongoing research in
the respective field. Recently, Mukhopadhyay and Mukhopadhyay
[8] investigated the influence of thermocapillarity on the span of
supercritical/subcritical regimes and showed that it has a strong
effect on the amplitude and speed of the nonlinear waves. The re-
view of the literature confirms that, there is no such study address-
ing the effect of the above two types of problems simultaneously.
In the present study, an attempt is made to consider the combined
effect of uniform normal electric field that at infinity on the flow of
conducting viscous film on an inclined heated plane with linear
temperature variation.

2. Formulation of the problem

Consider a layer of a conducting thin liquid film flows down an
inclined heated plane of inclination h with the horizon under the
action of gravity and an uniform electric field that at infinity and
perpendicular to the unperturbed interface. The co-ordinate sys-
tem is chosen such that x-axis along the flow and z-axis normal
to the inclined plane. We assume that the electrical permittivities
are constant but take different value in different medium. Due to
constant permittivity, the fluid is not coupled to the electric field
in the bulk (Melcher and Taylor [9]). However, electrical parame-
ters suffer discontinuities at the interfacial region only, so interface
experiences the effect of electric field. The governing equations
consist of the continuity equation, Navier–Stokes equation for
the flow of the liquid layer, energy equation for the temperature
field and Laplace equation for the electric field. The governing
equations in dimensional form can be written as:

r � v ¼ 0 ð1Þ
qðvt þ ðv � rÞvÞ ¼ �rpþ qmr2vþ qg ð2Þ
otT þ ðv � rÞT ¼ jr2T; ð3Þ
r2U ¼ 0 ð4Þ

where v = (u,0,v) is the velocity vector, g ¼ ðg sin h;0;�g cos hÞ is
the acceleration due to gravity vector and p, q, m, T denote the pres-
sure, density, kinematic viscosity and absolute temperature, respec-
tively, andr ¼ ðo=ox;0; o=ozÞ. Also j ¼ kT=ðqCpÞ denote the thermal
diffusivity, kT thermal conductivity, Cp the specific heat at constant
pressure of the fluid and U denotes the electric potential. The per-
tinent boundary conditions on the inclined plane (z = 0) and at the
free surface ðz ¼ hðx; tÞÞ are:

No-slip condition at the plane:

v ¼ 0 at z ¼ 0; ð5Þ

law of temperature variation of the plane:
T ¼ Tg þAx at z ¼ 0; ð6Þ
kinematic boundary condition:

othþ ðv � rÞðh� zÞ ¼ 0 at z ¼ h; ð7Þ
condition that the liquid is grounded perfect conductor:

U ¼ 0 at z ¼ h; ð8Þ

continuity of the shear stress:

½½n � s � t�� ¼ rrðTÞ � t at z ¼ h; ð9Þ

continuity of the normal stress:

½½n � s � n�� � ½½p�� ¼ �rðTÞr � n at z ¼ h; ð10Þ

Newton’s law of cooling:

kTrT � nþ kgðT � TgÞ ¼ 0 at z ¼ h; ð11Þ
where Tg denotes the temperature in the gas phase,A ¼ ðTH � TCÞ=l0,
where TH and TC denote the temperatures at hotter part and the
colder part, respectively, along the inclined plane and l0 the charac-
teristic longitudinal length scale whose order may be considered
same as the wave length k. In this study, we have taken the tempera-
ture T is increasing in the stream-wise direction and hence A is posi-
tive. Alsor(T) is the surface tension of the liquid, kg is the heat transfer
coefficient between the liquid and air and [[*]] denotes a jump in the
quantity as the interface is crossed from the liquid to vacuum region.
n and t are the normal and tangent vectors pointing outward to the
interface, respectively, and the stress tensor s is given by

s ¼ sf þ se

where the viscous stress tensor

sf
ij ¼ qm

oui

oxj
þ ouj

oxi

� �
and the electrical (Maxwell) stress tensor

se
ij ¼ �m EiEj �

1
2

EkEkdij

� �
;

where �m is the permittivity of the concerned medium.
Further we have uniform normal electric field far from the

surface, which gives

Uz ! E0 as z!1; ð12Þ

where E0 is the basic uniform normal applied electric field and at
the free surface ðz ¼ hðx; tÞÞ as another boundary condition.

The above equations are quite general regarding various coeffi-
cients (kT, j, l, r, etc.). It is well known that temperature variation
in the fluid can cause dramatic changes in the above coefficients,
but approximations can be made depending on the type of the
problem being examined. In the foregoing analysis, we have as-
sumed the variation of surface tension as

rðTÞ ¼ r0 � cðT � TgÞ; ð13Þ

where r0 is the surface tension at Tg, the temperature in the gas
phase, which is taken as the reference temperature and
c ¼ �or=oTjT¼Tg

is a positive constant for most common fluids.
The assumption of linear variation of surface tension with temper-
ature is very much compatible with the experimental data. Apart
from water [8,10] there are many liquids [11] which follow the lin-
ear variation of surface tension with the temperature scales. For
example, the molten tin (Sn) in the range of 520–1670 K and molten
zirconium (Zr) in the range 2000–2250 K follow the law

rðTÞ ¼ 561:6� 0:103ðT � 505Þm Nm�1 and

rðTÞ ¼ 1543� 0:66ðT � 2128Þm Nm�1;

respectively. It is to be noted here that both the liquids are highly
conducting.

To express the governing equations and boundary conditions in
non-dimensional form, we shall assume two length scales l0 and h0

as the characteristic measure for the length in longitudinal and trans-
verse direction, respectively; l0 may be assumed as one wave length
and h0 is the mean depth of the film, which gives l0� h0. Further to
measure the transverse length in the vacuum, which extend to infin-
ity, h0 is not a proper scale, so we shall consider l0 as the measure of
the transverse length in the vacuum. The Nusselt velocity
u0 ¼ gh2

0 sin h=3m will be assumed as the characteristic velocity along
the longitudinal direction. We define the dimensionless quantities as

x ¼ l0x�; h ¼ h0h�; z ¼ h0z� ðin liquidÞ;
z ¼ ðl0=h0Þf ðin vacuumÞ; t ¼ ðl0=u0Þt�; u ¼ u0u�;

v ¼ ðh0=l0Þu0v�; p ¼ qu2
0p�; T ¼ Tg þ T�ðTH � TCÞ;

U ¼ E0h0U
�: ð14Þ
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Using the above dimensionless quantities in the governing equa-
tions (1)–(4) and in the boundary conditions (5)–(12) after using
the relation (13) reduces to the form, after dropping the asterisk as:

(I) Equations in the liquid ð0 < z < hÞ
ux þ vz ¼ 0; ð15Þ

ut þ uux þ vuz ¼ �px þ
sin h
eFr
þ 1

eRe
e2uxx þ uzz
� �

; ð16Þ

e2ðvt þ uvx þ vvzÞ ¼ �pz �
cos h

Fr
þ e

Re
e2vxx þ vzz
� �

: ð17Þ

eRePrðTt þ uTx þ vTzÞ ¼ e2Txx þ Tzz: ð18Þ

(II) Equation in the vacuum ðeh < f <1Þ
/xx þ /ff ¼ 0: ð19Þ

(III) Boundary conditions at the wall (z = 0)

u ¼ 0; v ¼ 0; T ¼ x: ð20Þ

(IV) Boundary conditions at the free surface ðz ¼ h; f ¼ ehÞ
v ¼ ht þ uhx; ð21Þ

/ ¼ 1� h; ð22Þ

ð1� e2h2
x Þðuz þ e2vxÞ þ 4e2hxvz

h i
1þ e2h2

x

� 	�1=2
¼ �MnðTx þ hxTzÞ;

ð23Þ

pa � pþ 2e
Re

vz
1� e2h2

x

1þ e2h2
x

� hx
uz þ e2vx

1þ e2h2
x

 !

¼ e2Weð1� Ca � TÞ hxx

ð1þ e2h2
x Þ

3=2 þ
1
2

Ewð1þ e2h2
x Þð1þ e/fÞ

2
;

ð24Þ

ðTz � e2hxTxÞð1þ e2h2
x Þ
�1=2 þ Bi � T ¼ 0: ð25Þ

(V) Boundary condition at infinity (f ?1):

/f ! 0; ð26Þ

where / is the perturbed electric potential, i.e. U ¼ E0ðz� h0Þ þ /,
Frð� u2

0=gh0Þ is the Froude number, Reð� u0h0=mÞ is the Reynolds
number, Prð� m=jÞ is the Prandtl number, Mnð� 3cðTH � TCÞ=
qgl0h0 sin hÞ is the Marangoni number,1 Weð� r0=qu2

0h0Þ is the Weber
number, Cað� cðTH � TCÞ=r0Þ is the capillary number, Ewð� �0E2

0=qu2
0Þ

is the electric Weber number (�0 = 8.854 � 10�12 farads/m is the per-
mittivity of the vacuum), Bið� kgh0=kTÞ is the Biot number and
eð� h0=l0Þ is the aspect ratio for long wave expansion. In deriving the
above sets of equations we have used that the Maxwell stress vanishes
inside the liquid layer while the viscous stress are null in the air. Also
the dynamic influence of the air above the liquid film is ignored.
2.1. Nonlinear evolution equation

Eq. (19) is solved using (22) and (26), which gives

/ ¼ 1
p

Z 1

�1

zðhðx0Þ � 1Þ
z2 þ ðx� x0Þ2

dx0: ð27Þ

Solving Eq. (17) for lowest order, by using (24) and (27), we have

p0¼ paþ
3coth

R
ðh�zÞþ1

2
Ew �1þ2eðHðh�1ÞÞx
� �

�e2Wehxx; ð28Þ
1 Mn ¼ eMa=RePr, Ca ¼ CrMa, where Ma ¼ cðTH � TCÞh0=lj and Cr ¼ lj=r0h0 are,
respectively, the Marangoni numbers and Crispation/capillary in usual definition.
where HðhÞ represents the Hilbert transform operator given by

HðhðxÞÞ ¼ 1
p
P

Z 1

�1

hðx0Þ
x0 � x

dx0;

with P the principal value of the integral. It can be shown by using
the definition of the Nusselt velocity that

sin h
Fr
¼ 3

Re
: ð29Þ

We have assumed that the Reynolds number is O(1) and Weber
number is O(1/e2), Marangoni number is of order O(1), Capillary
number is O(e), the Prandtl number is O(1), Biot number is O(e2)
and the electric Weber number is O(1/e). We are now interested
in yielding a nonlinear evolution equation in terms of film thickness
h(x, t). Expanding the velocity components, pressure and the
temperature in powers of e as:

u ¼ u0 þ eu1 þ � � � ; v ¼ v0 þ ev1 þ � � � ; p ¼ p0 þ ep1 þ � � � and
T ¼ T0 þ eT1 þ � � �

and substituting the above into the governing equations (15), (16)
and (18) and the boundary conditions (20), (23) and (25) and also
using (28) we obtain a set of PDEs for a different order of e. The
velocity profile and its depth averaged velocities for the zeroth-or-
der and the first-order problem is obtained as

At O(1):

u0 ¼ 3 hz� z2

2

� �
�Mn � z; ð30Þ

u0 ¼ h2 � 1
2

Mn � h; ð31Þ

and at O(�):

u1 ¼ Re
3 cot h

Re
hx � e2Wehxxx þ eEwðHðh� 1ÞÞxx

� �
z2

2
� hz

� ��
þ1

2
ð3h�MnÞ z4

4
þ 2h3z

� �
hx þ

1
2

htz3

þ1
2

Pr �Mnð5h� 2MnÞh2zhx

�
; ð32Þ

u1 ¼ Re � cot h
Re

hx þ
1
3
e2Wehxxx �

1
3
eEw Hðh� 1Þð Þxx

� �
h2

�
þ2

5
ð3h�MnÞh4hx þ

1
4

Pr �Mnð5h� 2MnÞh3hx

�
: ð33Þ

Integrating the continuity equation (15) with respect to z from 0
to h by using Leibnitz’s rule and boundary conditions (20) and (21),
we have

oh
ot
þ oðu0hÞ

ox
þ e

oðu1hÞ
ox

þ Oðe2Þ ¼ 0: ð34Þ

Substituting u0 and u1 from (31) and (33) in (34), we get

ht þ AðhÞhx þ e BðhÞhx þ eCðhÞðHðh� 1ÞÞxx þ e2DðhÞhxxx
� �

x ¼ 0;

ð35Þ

where the suffixes denote the differentiation with respect to the
corresponding variables and

AðhÞ ¼ 3h2 �Mnh;

BðhÞ ¼ � cot hh3 þ 2
5

Reð3h�MnÞh5 þ 1
4

Re Pr Mnð5h� 2MnÞh4
;

CðhÞ ¼ �1
3

ReEwh3
;

DðhÞ ¼ 1
3

ReWeh3
:
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3. Stability analysis

To study the instability, the film thickness may be written as

h ¼ 1þ g; ð36Þ

where g	 1 are the dimensionless perturbation of the film
thickness.

Setting the transformation

t ¼ eet and x ¼ eex ð37Þ

and using (36) and (37) in (35), and retaining the terms up to the
third order fluctuations after dropping the tilde sign can be written
as

gt þ Agx þ Bgxx þ CðHðgÞÞxxx þ Dgxxxx þ A0ggx þ B0ðggxÞx

þ C 0ðgðHðgÞÞxxÞx þ D0ðggxxxÞx þ
1
2

A00g2gx þ B00
1
2
g2gx

� �
x

þ C 00
1
2
g2ðHðgÞÞxx

� �
x

þ D0
1
2
g2gxxx

� �
x

þ Oðg4Þ ¼ 0; ð38Þ

where A, B, C, D and their corresponding derivatives are evaluated at
h = 1.

3.1. Linear stability analysis

In this section, we are interested to study the linear response for
a sinusoidal perturbation of the film by assuming the perturbation
of the form

g ¼ C expfiðkx�xtÞg½ � þ c:c:; ð39Þ

where C is the amplitude of the disturbance and c.c. represents
complex conjugate. Here the wave number k is real and
x ¼ xr þ ixi is the complex frequency. Using (39) in linearized part
of (38), we get the dispersion relation as

Dðx; kÞ � �ixþ iAk� Bk2 þ Ck2jkj þ Dk4 ¼ 0: ð40Þ

Equating the real and imaginary parts of (40), we get

xr ¼ Ak and xi ¼ Bk2 � Ck2jkj � Dk4
: ð41Þ

Therefore, the phase speed

cr ¼ xr=k ¼ 3�Mn; ð42Þ

it is to be noted here that the phase speed is independent of k,
implying the wave is non-dispersive in nature. Also it is clear that
linear phase speed is independent of electric Weber number but it
depends on Marangoni numbers. The minimum Re at which insta-
bility sets in may be denoted as the critical Reynolds number Rec

for the wave formation and obtained from (41) as

Rec ¼
60We cot h

5E2
w þ 3We½8ð3�MnÞ þ 5PrMnð5� 2MnÞ�

: ð43Þ

As Mn! 0, Ew ! 0, Rec ¼ ð5=6Þ cot h, which is the critical Re for iso-
thermal case as obtained by Benjamin [12] and Yih [13]. Also as
Ew ! 0, the Rec coincides as obtained by Mukhopadhyay and
Mukhopadhyay [8]. Again as Mn! 0, the Rec is compatible with
that of Mukhopadhyay and Dandapat [3] except the possible differ-
ence as that was calculated by momentum integral method.

In the neutral state xi ¼ 0 gives two relations

k ¼ 0; ð44aÞ

kc ¼
ReEw 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2E2

w þ 36BD
q

6D
; ð44bÞ

which correspond to two branches of the neutral curves and the
flow instability takes place in between them. Further the neutral
curves intersect at the bifurcation point Re = Rec, k = 0.
3.2. Nonlinear stability analysis

To study the growth of weakly nonlinear waves, we shall use
the method of multiple scales and expand the surface elevation g
as

gðx; x1; . . . t; t1; t2; . . .Þ ¼ 1g1 þ 12g2 þ 13g3 þ � � � ; ð45Þ

where the scalings x; x1; . . . t; t1; t2; . . . are related according to

x1 ¼ 1x; t1 ¼ 1t; t2 ¼ 12t; . . . : ð46Þ

Using (45) and (46) in (38) we get

ðL0þ1L1þ12L2þ���Þð1g1þ12g2þ13g3þ���Þ¼�12N2�13N3��� �
ð47Þ

where L0, L1, L2, etc. are the operators and N2, N3 are the nonlinear
terms of Eq. (47) that are given in Appendix A.

In the lowest order of 1, we have

L0g1 ¼ 0; ð48Þ

which has a solution of the form

g1 ¼ Cðx1; t1; t2Þ½exp iH� þ c:c: ð49Þ

where H ¼ kx�xrt and c.c. denotes the complex conjugates. It is to
be noted here that the above solution given in (49) is already ob-
tained in connection with the linear stability analysis except x is
replaced by xr, since in the vicinity of the neutral curve
xi ¼ Oðe2Þ, so that the function expðxitÞ is slowly varying and
may be absorbed in Cðx1; t1; t2Þ.

In the second order, the perturbation system yields

L0g2 ¼ �L1g1 � N2: ð50Þ

Invoking (49) in (50), we have

L0g2 ¼ �i
oDðxr; kÞ

oxr

oC
ot1
� oDðxr; kÞ

ok
oC
ox1

� �
eiH �XC2 e2iH þ c:c:;

ð51Þ

where Dðxr; kÞ is given by (40), and

X ¼ iA0k� 2B0k2 þ 2C 0k2jkj þ 2D0k4
:

The uniform valid solution for g2 is obtained from (50) as

g2 ¼ �
XC2 e2iH

Dð2xr;2kÞ þ c:c: ð52Þ

Introducing the co-ordinate transformation n ¼ ðx1 � cgt1Þ, where
cgð¼ �Dk=Dxr Þ is the group velocity, and using the solvability
condition on the third order equation, we get

oC
ot2
þ J1

o2C

on2 � 1�2xiCþ ðJ2 þ iJ4ÞjCj
2C ¼ 0; ð53Þ

where

J1 ¼ B� 3Ck� 6Dk2
;

J2 ¼
1
2

D00k4 �3C 00k2jkj � B00k2
� 	
þ
ðA0Þ2k2 � 2 7D0k4 �5C 0k2jkj � B0k2

� 	
D0k4 þ C0k2jkj � B0k2
� 	

16Dk4 þ8Ck2jkj �4Bk2

24 35
and

J4 ¼
1
2

A00k� A0k
9D0k4 þ 7C0k2jkj � 3B0k2

16Dk4 þ 8Ck2jkj � 4Bk2

" #
:
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For filtered waves there is no spatial modulation and the diffu-
sion term vanishes, we get

oC
ot2
� 1�2xiCþ ðJ2 þ iJ4ÞjCj

2C ¼ 0: ð54Þ

Solution of this equation may be written as

C ¼ ae�ibðt2Þt2 ; ð55Þ

which gives

oa
ot2
¼ 1�2xi � J2a2� �

a; ð56Þ

and

oðbðt2Þt2Þ
ot2

¼ J4a2: ð57Þ

Eq. (56) is nothing but the Landau equation. This equation is used to
characterize the nonlinear behaviour of the travelling film flow. The
second term on the right-hand side of Eq. (56) is due to nonlinearity
and may moderate or accelerate the exponential growth of the lin-
ear disturbance. For the existence of a supercritical stable zone in
the linear unstable region ðxi > 0Þ, the second Landau constant J2

should be positive and the threshold amplitude will be

1a ¼ xi=J2½ �1=2
: ð58Þ

On the other hand, in the linear stable zone ðxi < 0Þ if J2 < 0 the flow
will be subcritically unstable and 1a is the threshold amplitude.

The nonlinear wave speed in the supercritical stable zone is
obtained by

Ncr ¼ cr þ ciðJ4=J2Þ; where ci ¼ xi=k: ð59Þ
0 5 10 15 20 25 30 35 40 45 50
0.1
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0.3

0.35

Ew

R
e c

Mn = 0.1 
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→

→

4. Side-band stability analysis

In this section, we examine whether a filtered finite-amplitude
wave of film flow with phase change is stable with respect to side-
band disturbance.

Spatially uniform solution of (54) in the form

C1ðt2Þ ¼ jC1j expð�iQt2Þ

gives

Q ¼ f�2xi
J4

J2
; C2

1 ¼
f�2xi

J2
:

This solution is perturbed by spatial side-band disturbances in the
form

C ¼ C1ðt2Þ þ ½dCþðt2Þ expðiKXÞ þ dC�ðt2Þ expð�iKXÞ� expð�iQt2Þ;

with K being the modulation wave number and it is substituted in
(54). Neglecting the terms containing nonlinearities of dCþ; dC�
one obtains

o

ot2

dCþ
dC�

� �
¼

A11 A12

A21 A22

� �
dCþ
dC�

� �
; ð60Þ

where

A11 ¼ �2ðJ2 þ iJ4ÞC2
1 þ iQ þ f�2xi þ K2J1;

A12 ¼ �ðJ2 þ iJ4ÞC2
1; A21 ¼ A12;

A22 ¼ �2ðJ2 � iJ4ÞC2
1 � iQ þ f�2xi þ K2J1:

Considering only the linear stability of the supercritical wave,
one write the solution of (60) in the form

cþ
c�

� �
¼

dCþ
dC�

� �
expðkt2Þ:
The eigen value of k in the above solution, after solving the eigen
value problem (60) are

k1 ¼ J1K2; k2 ¼ J1K2 � 2f�2xi:

From (60) the trace of the matrix = A11 + A22 is real and negative for
xi > 0, therefore at least one of the eigen value, in this case, is real
and negative, which corresponds to the linearly sideband stable
mode. The other eigen value can, however, have either positive or
negative real part depending the values of the problem parameters.
If both the eigen values are negative then the spatially uniform solu-
tion is stable with respect to the side-band disturbances for xi > 0.

5. Results and discussion

The object of this study is to quantify the thermocapillary effect
on a viscous film flowing down an inclined plane with linear temper-
ature variation in presence of normal electric field in the finite ampli-
tude regime. Physical parameters chosen for this investigation are:
(1) Reynolds number ranging from 0 to 2. (2) Marangoni number
ranging from 0 to 0.6. (3) Electric Weber number ranging from 0 to
50. (4) Prandtl number 7. (5) Weber number 450. The ongoing anal-
ysis is completely theoretical one. Since, a complete set of data
regarding the necessary physical properties for a particular fluid that
can perfectly match with our problem concerned are not available,
therefore it is very difficult to estimate the value of the parameters
involved in this problem for a particular fluid. To estimate the elec-
tric Weber number Ew we have considered a highly viscous liquid
glycerine of mean film thickness h0 = 2.0 � 10�3 m, kinematic vis-
cosity m = 1.19 � 10�3 m2/s, density q = 1260 kg/m3, the inclination
angle h = p/3 and a very high electric field E0 = 800 kV/m (although
it is very strong but is still almost one-third of the dielectric break-
down of the field in air) which gives Ew = 49.8. For estimation of
the other parameter, like Mn we refer [8].

Fig. 1 shows the variation of Rec with Ew for different Mn. It is
clear from the figure that as Mn increases Rec decreases showing
the destabilizing effect of Mn on the other hand Rec also decreases
with Ew, confirming the destabilizing effect of Ew. Therefore, we
conclude that the influence of both the parameters Mn and Ew

are qualitatively same but there is a quantitative difference be-
tween the parameters. It is clear from the figure that the effect of
electric field is very feeble compare to the thermocapillary effect.
The reason behind the fact is that the electric parameter does not
appear in the first order correction of the evolution equation (35)
whereas the Marangoni number appears from the first order terms.
Fig. 1. Variation of Rec for different Ew and for h = p/3, We = 450 and Pr = 7.
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Numerically analyzing the nature of J2 and xi we have found
that supercritical stable, subcritical unstable, unconditional and
explosive zones are possible with the variation of the Marangoni
number Mn. As for example for a fixed k = 0.145 the variation of
J2 and xi with the Marangoni number Mn are depicted in Fig. 2.
It reveals from the figure that for Marangoni number Mn 6
0.2472(approx) subcritical unstable and for Mn P 0.3007(approx)
supercritical stable zones are possible and in the intermediate
range of Mn unconditional stable zone exist. Similarly for a fixed
wave number and for a proper chosen parameters other than Ew

it is found that all the above stability zones can exist with the var-
iation of Ew [3]. Thus both Marangoni number Mn and electric We-
ber number Ew control the stability criteria.

Variation of the threshold amplitude with the Marangoni num-
ber Mn in the supercritical stable and subcritical unstable zones for
a fixed wave number and for different electric parameters Ew are
shown in Figs. 3 and 4, respectively. Fig. 3 reveals that the thresh-
old amplitude increases with both Mn and Ew in the supercritical
stable region, while Fig. 4 shows that in the subcritical unstable re-
gion it decreases with the increase of the parameters Mn and Ew

confirming the destabilizing role of the parameters Mn and Ew. It
is observed from Fig. 3 that in the supercritical stable region the
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threshold amplitude becomes larger rapidly for the initial change
in Ew but as Ew increases the rate of increase diminishes.

Fig. 5 shows the variation of nonlinear wave speed with the
Marangoni number Mn in the supercritical stable region for a fixed
wave number and for different values of electric parameters Ew. It
is clear from the figure that nonlinear wave speed increases with
both Mn and Ew as expected.

Finally, by computing the eigen value problem for the side-band
instability we found that for considered parameter range both the
eigen values k1 and k2 are negative, so the supercritical waves are
stable with regard to side-band disturbance.
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Appendix A
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